If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-28=0
a = 2; b = 5; c = -28;
Δ = b2-4ac
Δ = 52-4·2·(-28)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{249}}{2*2}=\frac{-5-\sqrt{249}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{249}}{2*2}=\frac{-5+\sqrt{249}}{4} $
| 1/5x+13=50 | | 10+20x/2+4x=47 | | 6×-2(x-3)=4(x+1)+4 | | 4r2-28r=-49 | | 2(5-6)=2-4d | | 2x-3/9=x+2/6 | | 6a=2a+48 | | 2x^2+17x=370 | | x/4+11/12=1/2-1/6x | | 35x-27=0 | | 3x+(10x+21)=90 | | 6u=22 | | (8/7)=4u | | 2^30=x | | x^2-3x-1/2=0 | | 6x^2+50x-4070=0 | | 2(4x+2)=4x+12(x-1) | | 3x+(10x21)=90 | | 29-3/8x=-3/8x+29 | | 3x+127=6+175 | | 8(10-8)=2k | | 3y2+51=918 | | x/3+9=1/6 | | G=1/2(w+40) | | x(5x+1)=2x^2-18x+14 | | 6x+12=6x+3 | | 4y+5(y-4)=4y-2(y-10) | | 6-(m/7)=17 | | 8x-3x+5x-6x=2x-3-4x | | y2=400 | | 5x-3+x=8-2x+10 | | 5x+8=-3x-2 |